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ABSTRACT

This dissertation contributes to two specific topics within the general area of exploration

seismology. In exploration seismology, primaries are used to locate reflectors in a process

called migration. In practice a smooth and continuous velocity is generally assumed to

obtain the subsurface structural images of reflectors from recorded primaries. When using

a smooth velocity model, multiples in the recorded data will result in false subsurface

images of reflectors where no reflectors exist, producing an erroneous and mistaken view of

the subsurface. Hence multiples need to be predicted and removed from the recorded data

first, before imaging primaries.

The first part of this dissertation contributes to the removal of internal multiples using the

Inverse Scattering Series (ISS). The ISS internal multiple attenuator (of a given specific

order), inputs the recorded primaries and internal multiples. The primaries in the input

data predict internal multiples of that order from all reflectors at once with accurate time

and approximate amplitude and without subsurface information. When the internal mul-

tiples in the input data enter the ISS attenuator of a given order, they (1) contribute to

higher order internal multiples removal and (2) under certain circumstances can cause false

or spurious events to be predicted. Terms in the internal multiple removal subseries, which

are of higher order than the ISS internal multiple attenuator, have the purpose and capa-

bility of addressing a shortcoming of its lower order and less accommodating relative. The

new internal multiple algorithm within this dissertation combines the original lower order

attenuation algorithm with the inclusion and assist of the higher order terms, providing a
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comprehensive internal multiple attenuator that can accommodate primaries and internal

multiples in the input data. That new higher-order algorithm provides all the benefit of the

original ISS internal multiple attenuation algorithms without its deficits and shortcomings.

This dissertation contributes to identifying those higher-order terms, and examining, testing

and analyzing the relevant and practical benefit provided by this higher-order algorithm.

In principle only primaries are called for to determine structure and to identify subsurface

properties. However, when the collection of primaries is incomplete and less than adequate,

then the predicted multiples can, at times, be used to provide an approximate image of

unrecorded primaries. The latter can supplement the subsurface structural image from

recorded primaries. The second part of this dissertation contributes to (1) studying the

procedure of using multiples to enhance subsurface structural imaging, and (2) examining

and illustrating the added-value from that procedure.

To summarize, this dissertation contributes to two important topics in exploration seismol-

ogy, (1) identifying and removing multiples and (2) using multiples. This dissertation shows

multiples can be used to provide an approximate image of unrecorded primaries to enhance

the subsurface structural from recorded primaries. However, multiples need to be first pre-

dicted and removed from the data before imaging the recorded primaries for processing

goals that seek to effectively locate and invert reflections. The removal of multiples remains

a key open issue, and high priority pressing challenge. This dissertation is part of an overall

strategy to use the ISS to provide further capability for internal multiple prediction and

removal in extremely complicated onshore and complex offshore exploration cases.
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1. INTRODUCTION AND BACKGROUND

This chapter provides a general background and introduction for the advances and con-

tributions that this dissertation makes to specific data processing methods/tools used in

exploration seismology. An overview of this dissertation is also provided.

1.1 Exploration seismology

The objective of exploration seismology is to find commercially economic subsurface deposits

of crude oil, natural gas and minerals. In exploration seismology, a man-made seismic source

(e.g., air-guns1 for offshore exploration, dynamite2 or seismic vibrators3 for onshore explo-

ration) creates waves that propagate into earth. A portion of those artificially induced waves

gets reflected by subsurface rock layers, travels back to the earth surface and is recorded

by seismic receivers4 (e.g., hydrophone in marine, geophone on land). Figure 1.1 provides a

cartoon to illustrate seismic data acquisition in marine environment. The recorded seismic

waves (referred to as seismic data) are processed and interpreted by geophysicists and ge-

ologists to locate commercial-sized reservoirs. Seismic data consist of many seismic traces5.

1A source of seismic energy used in acquisition of marine seismic data. This gun releases highly com-
pressed air into water (www.glossary.oilfield.slb.com).

2A type of explosive used as a source for seismic energy during data acquisition
(www.glossary.oilfield.slb.com).

3A seismic vibrator is a truck-mounted or buggy-mounted device that is capable of injecting low-
frequency vibrations into the earth (www.en.wikipedia.org/wiki/Seismic vibrator).

4A device that detects seismic energy in the form of ground motion or a pressure wave in fluid and
transforms it to an electrical impulse (www.glossary.oilfield.slb.com).

5The seismic data recorded by one receiver due to one source, as a function of time, is called a seismic
trace.
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Introduction

Fig. 1.1: A cartoon to illustrate the activity of seismic data acquisition in marine environment
(http://naturalgas.org/naturalgas/exploration/).

Each trace contains discrete arrivals of seismic waves recorded by one receiver as a function

of arrival time. Those discrete arrivals of seismic waves are referred to as “events” (see

Figure 1.2).

It is useful to catalog seismic events based on their travel histories. For instance, Figure

1.3 shows different types of seismic events in marine seismic exploration. In marine seismic

exploration, reference waves are first defined as waves that travel directly from source to

receiver and waves that first travel up to the air-water boundary and then to the receiver.

These two types of waves did not experience the subsurface6. All other events have expe-

rienced the subsurface. Then, among the waves that did experience the subsurface7, ghost

events are defined as the seismic events that begin their propagation histories by traveling

up from the source to the air-water boundary (source ghosts) or end their histories by trav-

eling down from the air-water boundary to the receiver (receiver ghosts) or both (source

and receiver ghosts). After that, events that begin their history going downward from the

source and end their history upward at the receiver are divided into primary events and

multiple events. Primary events are defined as the events that experience only one upward

6In the marine environment, these two types of waves are called reference wave.
7Seismic events that did experience the earth are referred to as scattered wave.
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Introduction

Fig. 1.2: The cartoon on the left shows two events with two different travel paths; the cartoon on
the right shows one trace (circled by dashed red) where seismic events are represented by
the black and green triangles. Seismic traces are recorded as a function of shot position
( ~xs), receiver position ( ~xr) and time (t). This figure shows only one trace from one shot
and one receiver. In practice, seismic data consist of many shots where each shot contains
many receivers.

reflection during their propagation history, whereas multiple events are defined as the events

that experience multiple reflections during their propagation history. Multiple events are

further divided into free-surface multiples and internal multiples depending on the location

of downward reflection between two consecutive upward reflections.

Multiples that have at least one downward reflection at the air-water (for offshore explo-

ration) or air-land (for onshore exploration) surface are called free surface multiples, whereas

multiples that have all of their downward reflections below the air-water or air-land surface

are called internal multiples (Weglein et al., 1997). The order of a free-surface multiple

is defined as the number of reflections it has experienced only at the air-water or air-land

surface. In contrast, the order of an internal multiple is defined by the total number of down-

ward reflections below the air-water or air-land surface. Figure 1.4 illustrates of free-surface

multiples and internal multiples of different orders.

Notice that, these definitions of different event types follow a sequence.

After seismic data acquisition, the next step is to find petroleum reservoirs using the sub-

3



Introduction

Fig. 1.3: Illustration of different seismic events in marine environment. Yellow solid line: reference
wave; Green and light blue dashed: source ghost and receiver ghost, respectively; Dark
blue dashed line: free surface multiple; Orange dashed line: internal multiple; solid black
line: primary.

surface information carried by the recorded seismic data. Petroleum reservoirs are usually

located in structural traps8. A structural mapping of subsurface reflectors helps to locate

those traps and an estimation of properties (such as velocity, density) change across the

subsurface reflectors helps to determine if crude oil or natural gas is there once those traps

were located. Hence, the subsurface information that people want to get from seismic data

include, e.g., where the reflectors locate in the subsurface and how the mechanical proper-

ties change across those reflectors. The process to locate the subsurface reflectors is called

imaging, and the process to estimate the mechanical properties change across the reflectors

is called inversion.

Different imaging methods are developed to locate the subsurface reflectors based on dif-

ferent imaging principles. For example, imaging methods that are used a lot today by

the petroleum industry (e.g., Claerbout (1971); Whitmore (1983); Baysal et al. (1983);

Mcmechan (1983)) are based on the imaging principle of space-time coincident of upgo-

ing and downgoing waves, while the recently developed imaging method (Weglein et al.,

8In petroleum geology, a structural trap is a type of geological trap that forms as a result of changes in
the structure of the subsurface, due to tectonic, diapiric, gravitational and compactional processes. These
changes block the upward migration of hydrocarbons and can lead to the formation of a petroleum reservoir.

4



Introduction

Fig. 1.4: The top-left, top-right, bottom-left and bottom-right cartoon are first-order free-surface
multiple (one downward reflection at the air-water surface), second-order free-surface mul-
tiple (two downward reflections at the air-water surface), second-order internal multiple
(no downward reflections at the air-water surface, total of two downward reflections be-
low the air-water surface) and second-order internal multiple (no downward reflections
at the air-water surface, total of two downward reflections below the air-water surface),
respectively.
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Introduction

2011a,b; Liu and Weglein, 2014) that is well founded and physically interpretable is based

on the imaging principle of coincident source-receiver experiment at depth at time equals

zero. A velocity information is required as input in imaging methods based on both afore-

mentioned imaging principles9. In practice, a smooth and continuous velocity is generally

assumed. When a smooth and continuous velocity is used, only primaries are required to

locate reflectors, while other events, such as multiples, result in false images of reflectors

in imaging methods based on both imaging principles10 (Weglein, 2016). Therefore, events

except for primaries need to be removed11 from the seismic data before inputing the seismic

data to imaging and inversion algorithms to locate the reflectors and estimate properties

change.

The removal of reference wave, ghosts and multiples are usually achieved in stages. A

typical series of tasks to process the seismic data after its acquisition follows the sequence

shown below:

1. reference wave removal and deghosting;

2. free-surface multiple removal;

3. internal-multiple removal;

4. seismic imaging and inversion.

Steps (1) is usually called seismic data pre-processing, while step (2), (3) and (4) are usually

called seismic data processing. It should be mentioned that except for the first step whose

input is recorded seismic data, the input to every other step in the sequence is the output

9The ISS provides an ISS imaging algorithm (e.g., Weglein et al. (2003); Shaw (2005)) that does not
require any subsurface information, such as velocity information.

10In fact, when an accurate discontinuous velocity model is used, only primaries contribute to migration
with the same image and inversion results independent of whether multiples are kept or removed (Weglein,
2016).

11However, it should be mentioned that reference wave can be utilized to estimate the source wavelet
(Weglein and Secrest, 1990). A wavelet is used to describe a short time series which can be used to represent,
for example, the source characteristics.

6



Introduction

from the last step. Hence, how well all the earlier steps in the flow have been achieved will

affect the effectiveness of any given later step. For example, the steps to remove free-surface

multiples (e.g., Carvalho et al. (1991); Weglein et al. (1997)) and internal multiples (e.g.,

Araujo et al. (1994); Weglein et al. (1997)) are non-linear processes in terms of input data,

therefore, any errors in reference wave removal and deghosting will diminish the effectiveness

in removing multiples.

After removing reference wave, ghosts, free-surface multiples and internal multiples from

the data, the seismic data now contain only primary events. Then, imaging and inversion al-

gorithms take primaries as input and output subsurface structural mapping and mechanical

parameter estimation to find subsurface deposits of crude oil, natural gas and minerals12.

1.2 Challenges and Strategy

Multiple removal is a long-standing problem. Many methods have been developed in seismic

exploration history based on the assumptions of the data characteristic or the nature of the

earth (Weglein and Dragoset, 2005). These methods are often effective when the assump-

tions are satisfied. However, as the petroleum industry moves to ever more complex and

challenging offshore and onshore plays, providing detailed and accurate subsurface informa-

tion has become (and will continue to become) increasingly difficult to satisfy. The inability

to adequately provide that accurate and detailed subsurface information is a contributing

factor to the breakdown and failure of seismic processing methods and subsequent dry hole

drilling. That drives the search for capabilities that will not require subsurface information

(Weglein, 2013).

The Inverse Scattering Series (ISS) provides a procedure to achieve all processing objectives

directly and without subsurface information. This procedure can be divided into a set of

12In addition to seismic method, other methods such as gravitational, magnetic, electrical and electro-
magnetic methods are also used to achieve the ultimate goal of finding subsurface deposit of resources.
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steps: (1) removal of free-surface multiples; (2) removal of internal multiples; (3) imaging

and (4) inversion. Each step is achieved by a subset of the inverse scattering series which

is identified. For example, an ISS internal multiple removal subseries is identified and used

to derive the current ISS internal multiple attenuation algorithm. This ISS internal mul-

tiple attenuation algorithm has shown differential added-value, in comparison with other

internal multiple suppression methods, for complex exploration areas where internal mul-

tiple generators are difficult to be identified (e.g., Matson et al. (1999); Fu et al. (2010);

Hsu et al. (2010); Ferreira (2011); Terenghi et al. (2011); Luo et al. (2011); Weglein et al.

(2011); Kelamis et al. (2013)). It can predict internal multiples (with exact time and ap-

proximate amplitude) at all depths by combining primaries in the input data as subevents

without subsurface information. This algorithm has been recognized as the most capable

internal multiple suppression method by the petroleum industry. For example, at the 2013

Post-Convention Society of Exploration Geophysicists (SEG) Internal Multiple Workshop

(Thursday, September 26, 2013), nine of the eleven presentations describe and exemplify the

industry-wide impact and stand-alone capability (for complex offshore and onshore plays)

of the ISS internal multiple attenuation algorithm.

The ISS internal multiple attenuation algorithm consists of the ISS internal multiple atten-

uators of different orders. Each internal multiple attenuator of given order uses primaries

in the input data to predict internal multiples of that order from all reflectors at once with

accurate time and approximate amplitude and without subsurface information. However,

the input data consist of both primaries and internal multiples. When the internal mul-

tiples in the input data enter the ISS attenuator of a given order, they (1) contributes to

higher-order internal multiple removal and (2) under certain circumstances can cause false

or spurious events. Terms in the internal multiple removal subseries, which are of higher or-

der than the ISS internal multiple attenuator, have the purpose and capability of addressing

a shortcoming of its lower order and less accommodating relative. The new internal multiple

algorithm within this dissertation combines the original lower order attenuation algorithm

8
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with the inclusion and assist of the higher order terms, providing a comprehensive internal

multiple attenuator that can accommodate primaries and internal multiples in the input

data. That new higher-order algorithm provides all the benefit of the original ISS internal

multiple attenuation algorithms without its deficits and shortcomings.

This first part of this dissertation contributes to identifying those higher-order terms, and

examining, testing and analyzing the relevant and practical benefit provided by this higher-

order algorithm. It is also part of an overall strategy to use the ISS to provide further

capability for internal multiple prediction and removal in extremely complicated onshore

and offshore exploration cases.

As described in the Abstract, in principle, only primaries are called for to determine struc-

ture and to identify subsurface properties. Multiples, along with reference wave, ghosts,

need to be predicted and removed from the seismic data in order to obtain the primary-

only input to the imaging and inversion methods. However, when the collection of primaries

is incomplete and less than adequate, then the predicted multiples can, at times, be used

to provide an approximate image of unrecorded primaries. The latter can supplement the

subsurface structural image from recorded primaries. The second part of this dissertation

contributes to (1) studying the procedure of using multiples to enhance subsurface struc-

tural imaging, and (2) examining and illustrating the added-value from that procedure. As

pointed out in Weglein (2016), while multiples can be useful to provide an approximate

image of unrecorded primaries to supplement subsurface structural imaging, it is necessary

and important to point out and underline several points. (1) In practice, a smooth and

continuous velocity is generally assumed and only recorded primaries are required to obtain

the subsurface structural image of reflectors. Multiples need to be removed first from data

before imaging the recorded primaries for processing goals that seek to effectively locate

and invert reflections. The use of multiples cannot be a distraction from the high priority of

developing the next level of capabilities to remove multiples to allow recorded primaries to

9
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deliver their promise and potential. (2) If the collection of primaries is adequate, multiples

are not needed to provide an approximate image. (3) The use of multiples produces a lower

level and less capable form of images from the unrecorded primaries than imaging actual

recorded primaries. (4) There are artifacts (e.g., cross-talks) produced in the procedure of

using multiples, hence, this procedure needs to be judiciously implemented.

1.3 An overview of this dissertation

As described earlier, this dissertation contributes to two specific topics within the general

area of exploration seismology. The first topic of this dissertation is providing a comprehen-

sive internal multiple attenuator that can accommodate primaries and internal multiples in

the input data. It is discussed from chapter 2 to chapter 4. Following Weglein et al. (2003),

chapter 2 provides an introduction to Inverse Scattering Series and the current ISS internal

multiple attenuation algorithm. Chapter 3 describes the extended ISS data comprehensive

internal multiple attenuator which can accommodate primaries and internal multiples in

the input data and retain the unique effectiveness of current algorithm. Chapter 4 provides

numerical examples to demonstrate the added-value this extended data comprehensive al-

gorithm can provide in complex offshore and onshore exploration seismology plays. The

second topic of this dissertation is studying the use of multiples to provide an approximate

image of unrecorded primaries and examining and illustrating the added-value from that

procedure. It is discussed in chapter 5. Chapter 6 provides a summary of this dissertation.

10



2. INVERSE SCATTERING SERIES AND

INTERNAL-MULTIPLE-ATTENUATION SUBSERIES

This chapter provides an introduction on Inverse Scattering Series, its development on

different subseries on different seismic data processing tasks. Understanding the theory

background of ISS methods will help us understand why this powerful algorithm can achieve

all the seismic processing objectives in principle without needing any subsurface information.

2.1 Inverse Scattering Series

Scattering theory is a form of perturbation analysis, it describes how a perturbation in the

properties of a medium relates a perturbation to a wavefield that experiences that perturbed

medium (Weglein et al., 2003). It is customary to consider the unperturbed medium as the

reference medium. The difference between the actual and reference media is characterized by

the perturbation operator. The corresponding difference between the actual wavefield and

reference wavefield is called the scattered wavefield. Forward scattering takes the reference

medium, the reference wavefield and perturbation operator as input and outputs the actual

wavefield. Inverse scattering takes the reference medium, the reference wavefield and values

of the actual field on the measurement surface as input and outputs the difference between

actual and reference medium properties.

Following Weglein et al. (2003), I start the mathematical description of scattering theory

11



Inverse Scattering Series

with the differential equations governing wave propagation in the media.

LG = δ(~r − ~rs) (2.1)

L0G0 = δ(~r − ~rs) (2.2)

where L, L0 are differential operators in the actual and reference medium, respectively. G,

G0 are actual and reference wavefield, respectively. ~r, ~rs are receiver and source location,

respectively. Define the perturbation as V ≡ L0 − L.

Notice that the differential operator L and L0 represents the properties of the actual and the

reference medium; different earth model-types are described by different form of operators.

We can express the actual medium in terms of a reference medium and a perturbation as

L = L0 − V . Thus, equation 2.1 can be written as

(L0 − V )G = δ, (2.3)

L0G = δ + V G, (2.4)

With the solution of G0 from L0G0 = δ (i.e., equation 2.2), G can be solved as follows1,

G =

∫
G0(δ + V G) = G0 +G0V G. (2.5)

The last equation is called Lippmann-Schwinger equation (e.g., Taylor (1972)), which is

essentially an integral equation.

1If G and G0 satisfy equations LG = −δ(~r−~rs) and L0G0 = −δ(~r−~rs), then V is defined as V ≡ L−L0.
But the Lippmann-Schwinger equation stays the same.

12



Inverse Scattering Series

Iteratively substituting equation 2.5 into itself gives the forward scattering series,

ψs = G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + · · ·

= (ψs)1 + (ψs)2 + (ψs)3 + · · · (2.6)

where ψs = G − G0 is the scattered wavefield, and (ψs)n is the portion of ψs that is nth

order in V . The data D is the scattered wavefield evaluated on the measurement surface

D = (ψs)ms.

Equation 2.6 can be used as a modeling tool to obtain seismic wavefield on the measurement

surface (ψs)ms, given reference wavefield G0, and perturbation V (the difference between

the reference and actual medium properties).2

To derive the inverse scattering series, expanding the perturbation V as a series

V = V1 + V2 + V3 + · · · , (2.7)

where Vn is the portion of V that is nth order in the data, D. Substituting equation 2.7

into equation 2.6 and evaluating both sides on the measurement surface and setting terms

of equal order in the data equal gives the following set of equations

(Ψs)m = (G0V1G0)m, (2.8)

0 = (G0V2G0)m + (G0V1G0V1G0)m, (2.9)

0 = (G0V3G0)m + (G0V2G0V1G0)m + (G0V1G0V2G0)m + (G0V1G0V1G0V1G0)m, (2.10)

0 = (G0VnG0)m + (G0V1G0Vn−1G0)m + · · ·+ (G0V1G0V1G0V1 · · ·G0V1G0)m. (2.11)

V1 can be solved in equation 2.8 using the measured scattered wavefield (ψs)m and the

2Matson (1997) provides analytic examples to use equation 2.6 to obtain wavefield.
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Inverse Scattering Series

reference wavefield G0. Then, substitute V1 into equation 2.9, solve for V2 as in equation

2.8. In this manner, we can compute any Vn only using the measured scattered wavefield

(ψs)m and the reference wavefield G0. Hence V =
∑∞

n=1 Vn is an explicit direct inversion

framework.

2.2 Development of the inverse scattering series and its subseries for

seismic processing

The inverse scattering series methods were first developed by Moses (1956); Prosser (1969)

and Razavy (1975). Weglein et al. (1981) and Stolt and Jacobs (1980) applied the inverse

scattering series methods to extract multidimensional earth information from seismic data.

The inverse scattering series provides a direct method to determine the physical properties of

the subsurface using only measured data and reference medium. The important pioneering

work on convergence criteria for the inverse scattering series by Prosser (1969) provides a

condition which is difficult to translate into a statement on the size and duration of the

contrast between actual and reference media. Carvalho (1992) performed empirical tests

for a 1D acoustic medium without any subsurface information. The result indicated the full

series only convergences when the difference between the actual earth’s acoustic velocity

and reference velocity (water velocity) is less than 11%.

An apparent lack of robust convergence3 of the overall series suggested by numerical tests

motivates the concept that inversion can be viewed as a set of steps where each step is

achieved by different, task-specific subseries corresponding to that specific task. For exam-

ple, each step in inversion can be defined as achieving a task or objective: (1) removing

free-surface multiples; (2) removing internal multiples; (3) locating and imaging reflectors in

space; and (4) determining the changes in earth material properties across those reflectors.

3There are other factors that motivate the idea of developing distinct and task-specific subseries. See
Weglein et al. (2003) for more details.

14



Inverse Scattering Series

The idea was to identify, within the overall series, specific distinct subseries that performed

these focused tasks and to evaluate these subseries for convergence, requirements for a priori

information, rate of convergence, data requirements and theoretical and practical prereq-

uisites. It was imagined (and hoped) that perhaps a subseries for one specific task would

have a more favorable attitude towards, e.g., convergence in comparison to the entire series.

As mentioned in Weglein et al. (2003), the pursuit of task-specific subseries used several

different types of analysis with testing of new concepts to evaluate, refine and develop

embryonic thinking largely based on analogues and physical intuition. For example, for

internal multiples, understanding how the forward scattering series produces an internal

multiple event provides a “hint” where the inverse process might be located. That “hint”,

due to a symmetry between event creation and event processing for inversion, turns out

to be a suggestion, with an infinite number of possible realizations. Intuition, testing and

subtle refinement of concepts ultimately pointed to where the inverse process was located.

Once the location was identified, further rationalizations could be provided to explain the

choice among the plethora of possibilities.

Once the subseries was located, another issue that these task-specific subseries faced was how

many terms would be required in practice to achieve a certain level of effectiveness towards

the specific task associated with that subseries. The concept of purposeful perturbation was

developed to address this issue (Weglein et al., 2003). The idea is to identify the specific

purpose or role that each term within a task-specific subseries performs independent of the

subsurface or target over which the recorded data were collected4. For example, in the ISS

internal multiple attenuation subseries (Araújo, 1994; Araujo et al., 1994; Weglein et al.,

1997), the task of each term was understood to attenuate a given order of internal multiples

in the data; this task is accomplished regardless of the convergence of the series. Hence, a

thorough understanding of what task can be achieved by each term in a specific subseries

4The specific role that each term plays within a task-specific subseries was understood during the locating
and identifying each term in the inverse process.
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provides a guidance for its practical use and it mitigates the concern of overall convergence.

In addition, a knowledge of the role that each term plays in a specific subseries extends our

understanding of the series and provides a guidance for selecting additional terms for more

ambitious inversion objectives and capability.

2.3 The ISS internal multiple attenuation subseries

Distinct subseries can be isolated from the overall series to achieve different tasks. The

development of the specific subseries to remove internal multiples from ISS uses the analogy

between the forward and inverse series (Weglein et al., 1997, 2003). It was shown in Matson

and Weglein (1996) that the forward series could generate primaries and internal multiples

through the action of Gd0 in V , where Gd0 is a whole space Green’s function and V is

the perturbation operator5. The way that Gd0 acts on V to construct internal multiples

suggests the way to remove them. The construction of the first-order6 internal multiples

has the leading-order7 contribution from the third term of the forward series (Figure 2.1(a)),

which suggests that the leading-order8 contribution to the removal of the first-order internal

multiples can be found from the third term in the inverse series (Figure 2.1(b)).

Following that logic, the leading-order contributions to the removal of internal multiples of

different orders can be found from different terms in the inverse series. The ISS internal

multiple attenuation algorithm (Araujo et al., 1994; Weglein et al., 1997), described here,

chooses only the leading order contributions to the removal of internal multiples of all orders

from the removal series to form an algorithm that attenuates internal multiples of all orders

5It takes an infinite number of terms in the forward series to construct internal multiples of each order.
6“order” here describes the number of total downward reflections in an internal multiple. For example,

an internal multiple with only one downward reflection is called a first-order internal multiple, whereas an
internal multiple with two downward reflections is called a second-order internal multiple.

7“
::::::
leading

::::
order” contribution in the forward series means the

::::::::
beginning construction of internal multiples

of certain order.
8“

::::::
leading

:::::
order” contribution in the inverse series means the

::::::::
beginning removal of internal multiples

of certain order. It takes an infinite number of terms in the inverse series to completely remove internal
multiples of each order.
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Fig. 2.1: The leading order contribution to the generation of first order internal multiples in the
forward series is represented in (a) and suggests the leading order contribution to the
removal of first order internal multiples in the inverse series in (b). Figure adapted from
Weglein et al. (2003). Notice that the positive direction of z axis is downward.

effectively.

The collection of leading-order terms9 provides the ISS internal multiple attenuation al-

gorithm10. The ISS internal multiple attenuation algorithm starts with the input data,

D(kg, ks, ω), in 2D which is the Fourier transform of the deghosted prestack data with

wavelet deconvolved and the free surface multiples removed. The second term, D3(kg, ks, ω),

is the leading-order contribution to the removal of the first-order internal multiples. In 2

dimensional case, the second term is D3(kg, ks, ω) = (−2iqs)
−1b3(kg, ks, ω), where

b3(kg, ks, ω) =
1

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1b1(kg, k1, z1)e
i(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e

−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b1(k2, ks, z3)e
i(q2+qs)z3 . (2.12)

ω is temporal frequency, ks and kg are the horizontal wavenumbers for the source and re-

9Terms providing those leading-order contributions to the removal of internal multiples of different orders
are called leading-order terms.

10Because it collects only the leading-order terms, this algorithm is also referred to as leading-order ISS
internal multiple attenuation algorithm.
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ceiver coordinates, respectively; qg and qs are the vertical source and receiver wavenumbers

defined by qi = sgn(ω)
√

ω2

c20
− k2i for i ∈ {g, s}; zs and zg are source and receiver depths; and

zj (i ∈ {1, 2, 3}) represents pseudo-depth using reference velocity migration. The quantity

b1(kg, ks, z) corresponds to Stolt extended Claerbout III migration (Weglein et al., 1997; We-

glein, 2016) of effective plane-wave incident data, and b1(kg, ks, qg+qs) = −2iqsD(kg, ks, ω).

Weglein and Matson (1998) have demonstrated that Equation 2.12 can be interpreted as the

subevents prediction of internal multiples. Figure 2.2 illustrates a prediction of a first-order

internal multiple by Equation 2.12 using three primary events satisfying “lower-higher-

lower” relationship in pseudo-depth domain in the data. This “lower-higher-lower” relation-

ship is carried out by a small positive number ε in the limits of the integrals. In Equation

2.12, it requires z3 > z2 + ε and z2 < z1 − ε, hence, the relationship “lower(z1)-higher(z2)-

lower(z3). Notice that, zj (i ∈ {1, 2, 3}) is pseudo-depth using reference velocity migration,

however, the “lower-higher-lower” relationship in real depth is retained in pseudo-depth do-

main for most cases. Therefore, using this “lower-higher-lower” relationship in pseudo-depth

domain will predict the first-order internal multiples with three reflections corresponding

to “lower-higher-lower” locations in real depth (Nita and Weglein, 2007).

The predicted internal multiples have accurate time and approximate amplitude compared

with the true internal multiples in the data.

With the input data and the leading-order contribution to the removal of the first-order

internal multiples, data with the first order internal multiples attenuated are given by

D(kg, ks, ω) +D3(kg, ks, ω). (2.13)

Following the same logic of isolating the leading-order contribution to the removal of the

first-order internal multiples, leading-order contributions to the removal of higher-order in-

ternal multiples (e.g., second-order and third-order internal multiples) can also be identified.

With those leading-order contributions to the removal of internal multiples of different or-
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Fig. 2.2: Subevents construction of a first-order internal multiples in b3 in equation 2.12. The
first-order internal multiple (SABCR) can be constructed using three primary events
(SAE, DCR and DBE). The accurate time is predicted by (SAE)time + (DCR)time −
(DBE)time = (SABCR)time.

ders, the data with internal multiples of all orders attenuated, DIM , can be obtained by

adding those leading-order contributions to the data itself (Equation 2.14).

DIM (kg, ks, ω) = D(kg, ks, ω)︸ ︷︷ ︸
input data

+ D3(kg, ks, ω)︸ ︷︷ ︸
leading-order contribution to the

removal of 1st-order internal multiples

+ D5(kg, ks, ω)︸ ︷︷ ︸
leading-order contribution to the

removal of 2nd-order internal multiples

+ · · ·︸︷︷︸
leading-order contribution to the

removal of further higher-order internal multiples

,

= D(kg, ks, ω) +

∞∑
n=1

D2n+1(kg, ks, ω), (2.14)

where D(kg, ks, ω) is the input data and D2n+1(kg, ks, ω) is the leading-order contributions

to the removal of nth order internal multiples (n = 1, 2, 3, · · · )11. In the literature on ISS

11Internal multiple attenuation through the Inverse Scattering Series (ISS) is among the most intensive
computer processes employed in exploration seismology (Terenghi and Weglein, 2011). In multi-dimensional
case, usually only the second-term in equation 2.14 (i.e. D3(kg, ks, ω) is calculated to attenuate the most
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internal multiple attenuation, the D2n+1 term is also referred to as the attenuator of the

nth order internal multiples. D2n+1(kg, ks, ω) = (−2iqs)
−1b2n+1(kg, ks, qg + qs). A recursive

relationship that provides b2n+1 in terms of b2n−1 for n = 1, 2, 3, · · · , is given as

b2n+1(kg, ks, qg + qs) =
1

(2π)2n

∫ ∞
−∞

dk1e
−iq1(εg−εs)

×
∫ ∞
−∞

dz1e
i(qg+q1)z1b1(kg, k1, z1)A2n+1(k1, ks, z1),

n = 1, 2, 3, · · · , (2.15)

where

A3(k1, ks, z1) =

∫ ∞
−∞

dk2e
iq2(εg−εs)

∫ z1−ε

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

×
∫ ∞
z2+ε

ei(q2+qs)z3b1(k2, ks, z3)

and

A2n+1(k1, ks, z1) =

∫ ∞
−∞

dk2e
iq2(εg−εs)

∫ z1−ε

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

×
∫ ∞
z2+ε

ei(q2+qs)z3)A2n−1(k2, ks, z3), n = 2, 3, 4, · · · .

Next, following Weglein et al. (2003), I will provide a 1D normal incident analytic example to

illustrate the steps to use ISS internal multiple attenuation algorithm predict the first-order

internal multiples.

For a 1D earth and a normal incident plane wave, equation 2.13 reduces to (in time domain)

DIM (t) = D(t) +D3(t),
12 (2.16)

significant first-order internal multiples.
12Inverse Fourier transform takes equation 2.13 in wavenumber-frequency domain to space-time domain.

In 1D normal incident case, seismic data D in space-time domain is only a function of time.
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and equation 2.12 reduce to

b3(k) =

∫ ∞
−∞

dz1e
ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞
z2+ε

dz3e
ikz3b1(z3). (2.17)

where, for a normal incident plane wave, D3(ω) = b3(k).

Fig. 2.3: A one dimensional model with two reflectors.

In a two-reflector model (see Figure 2.3), the data D(t) due to a normal incident wave are

D(t) = R1δ(t− t1) +R′2δ(t− t2) + · · · , (2.18)

where R′2 = T01R2T10. R1 and R2 are the reflection coefficients of the first and second

reflector, respectively. T01 and T10 are transmission coefficients across the reflector 1.

A temporal Fourier transform of D(t) gives the data in the frequency domain,

D(ω) = R1e
iωt1 +R′2e

iωt2 + · · · . (2.19)

For a 1D medium and a normal incident plane wave, D(ω) = b1(kz) and the vertical wave

number is kz = 2ω
c0

. Then, the reflection data can be expressed in terms of kz,

b1(kz) = R1e
i 2ω
c0

c0t1
2 +R′2e

i 2ω
c0

c0t2
2 + · · · . (2.20)

Define the pseudo-depths z1 and z2 in the reference medium as z1 ≡ c0t1
2 and z2 ≡ c0t2

2 ,
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respectively. Rewrite the data as,

b1(k) = R1e
ikzz1 +R′2e

ikzz2 + · · · . (2.21)

After performing the Inverse Fourier transform from kz to z, b1(z) =
∫∞
−∞ e

−ikzzb(kz)dz,

substituting the data into the algorithm 2.17, and Fourier transforming back to the time

domain, we have

D3(t) =R1R
′2
2 δ(t− (2t2 − t1)) + · · ·

=R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)) + · · · . (2.22)

Figure 2.4 shows three subevents that are combined to predict the first-order internal mul-

tiple. The predicted internal multiple has the accurate phase (2t2 − t1 = t2 − t1 + t2) and

approximate amplitude (R1R
2
2T

2
01T

2
10 = T01R2T10 × R1 × T01R2T10). The true first-order

internal multiple in the data is −R1R
2
2T01T10δ(t− (2t2 − t1)) (Figure 2.5).

Fig. 2.4: Three primary subevents on the left are combined to predict a first-order internal multiple
on the right.

Fig. 2.5: The first-order internal multiple in the one dimensional model with two reflectors.
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The prediction result has two extra transmission coefficients of T01T10 and an opposite

polarity compared with the true internal multiple in the data. Adding the prediction result

to the data itself (i.e., D(t) +D3(t)) attenuates the first-order internal multiple in the data.

Early work of Araújo (1994) and Weglein et al. (1997) focused exclusively on the analysis of

the leading-order contribution to the removal of internal multiples of all orders (i.e., Equa-

tion 2.14) by treating primaries in the data as subevents. However, the input data contain

not only primaries but also internal multiples. Zhang and Shaw (2010) have used analytic

data from a two-reflector example in 1D normal incident case show that the attenuator of

the first-order internal multiple (i.e., Equation 2.12) predicts not only the first-order in-

ternal multiples but also higher-order internal multiples when both primaries and internal

multiples are treated as subevents. Furthermore, the situation is considerably more compli-

cated when the data from three or more reflectors are considered. In the later case, spurious

events can be generated whose traveltimes do no correspond to any physical events in the

data. In the next chapter, I will analysis the general output from the current leading-order

internal multiple attenuation algorithm (in specific, the general output from the second

term in the algorithm, which is the attenuator of the first-order internal multiples) when

both primaries and internal multiples enter the algorithm. The general output from the

attenuator of the first-order internal multiples includes (1) the prediction of all first-order

internal multiples (used to attenuate all the first-order internal multiples in the data), (2)

the prediction of all higher-order internal multiples, and (3) non-physical events when the

data from three or more reflectors are considered and certain timing relationship occurs.

I will demonstrate that the prediction of all higher-order internal multiple will benefit the

attenuation of all higher-order internal multiples in the data, and non-physical events are

anticipated by higher-order terms in the series and higher-order terms can be included to

the current leading-order algorithm to precisely address the non-physical events.
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3. THE ISS DATA COMPREHENSIVE

INTERNAL-MULTIPLE-ATTENUATION ALGORITHM THAT

ACCOMMODATES PRIMARIES AND INTERNAL MULTIPLES AS

SUBEVENTS IN THE INPUT DATA

The ISS internal-multiple-removal subseries has the promise that, given the input data con-

sisting of primaries and internal multiples, it will output primaries for migration and inver-

sion steps. Early analysis of the ISS internal-multiple-removal subseries focused on identify-

ing
::::::::::::
leading-order

::::::
terms from the subseries to develop an ISS internal-multiple-attenuation

algorithm (Araujo et al., 1994; Weglein et al., 1997). The algorithm selects three events in

the input data by a “longer-shorter-longer” relationship in the vertical-travel-time domain

and the primaries selected in that procedure predict the accurate time and approximate

amplitude of all first-order internal multiples without any subsurface information (Weglein

et al., 2003).

However, the input data contain both primaries and internal multiples. When internal

multiples themselves are selected in that procedure, two different types of events will be

produced. The first type is higher-order internal multiples (e.g., second-order internal mul-

tiples (Zhang and Shaw, 2010)) and the second type is spurious events (events that do not

exist in the data).

In this chapter, I will first review the two-reflector analytic example of Zhang and Shaw

(2010) and use that analytic example demonstrate that the prediction of higher-order in-

ternal multiples is a benefit and definite asset in that these predicted higher-order internal
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multiples cooperatively assist and benefit the attenuation of higher-order internal multiples

in the data. After that, I will proceed to examine the reason of spurious events generation

and the circumstances under which the spurious events issue is significant. I will show

that the spurious events are fully anticipated by the ISS, and specific
:::::::::::
higher-order

:::::::
terms

from ISS will precisely address that spurious-event issue. The inclusion of higher-order

terms to the original algorithm provides the new ISS data comprehensive internal-multiple-

attenuation algorithm that does not generate the spurious events and, at the same time,

retains the strength of the original algorithm.

3.1 General output from b3 in a two reflector example (Zhang and Shaw,

2010)

Following Zhang and Shaw (2010), I use a two-reflector example illustrate the generation

of higher-order internal multiples in the attenuator of the first-order internal multiples in

1D normal incident case. The reflection data due to an impulsive incident wave for a two

reflector model (see Figure 3.1) are

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′4δ(t− (2t2 − t1)) + · · · , (3.1)

where R′2 = T01R2T10, and R′4 = T01R2(−R1)R2T10. R1, R2, T01 and T10 have the same

meaning as in equation 2.18. Note that, in addition to two primaries, I include a first-order

internal-multiple in the data (the blue term).

A temporal Fourier transform of D(t) gives the data in the frequency domain,

D(ω) = R1e
iωt1 +R′2e

iωt2 +R′4e
iω(2t2−t1) + · · · . (3.2)

For a 1D medium and a normal incident plane wave, D(ω) = b1(k) and the vertical wave
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Fig. 3.1: A one dimensional model with two reflectors. There are two primaries and one first-order
internal multiple shown in the figure.

number is k = 2ω
c0

. Then, the reflection data can be expressed in terms of k,

b1(k) = R1e
i 2ω
c0

c0t1
2 +R′2e

i 2ω
c0

c0t2
2 +R′4e

i 2ω
c0

c0(2t2−t1)
2 + · · · . (3.3)

Define the pseudo-depths z1 and z2 in the reference medium as z1 ≡ c0t1
2 and z2 ≡ c0t2

2 ,

respectively. Rewrite the data as,

b1(k) = R1e
ikz1 +R′2e

ikz2 +R′4e
ik(2z2−z1) + · · · . (3.4)

After performing the Inverse Fourier transform from k to z, b1(z) =
∫∞
−∞ e

−ikzb1(k)dz,

b1(z) = R1δ(z − z1) +R′2δ(z − z2) +R′4δ(z − (2z2 − z1)) + · · · . (3.5)

substituting the data into the algorithm b3(k), and Fourier transforming back to the time

domain (in this case, b3(k) = D3(ω)),

D3(t) =R1R
′2
2 δ(t− (2t2 − t1)) + 2R1R

′
2R
′
4δ(t− (3t2 − 2t1))

+R′2R
′2
4 δ(t− (3t2 − 2t1)) +R1R

′2
4 δ(t− (4t2 − 3t1)) + · · · . (3.6)

Result 3.6 shows that the prediction includes (1) the first-order internal multiples (the blue

term) and (2) higher-order internal multiples (the red terms).
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Similar to Figure 2.4, Figure 3.2 explains the prediction of a higher-order internal multiple

(2R1R
′
2R
′
4δ(t− (3t2 − 2t1))) in b3 by combining not only primaries but also internal multi-

ples in the input data as subevents. The factor of 2 in the prediction coefficient is because

the first-order internal multiple can act as a subevents in either the innermost or outermost

integral in b3.

Fig. 3.2: One internal multiple subevent and two primary subevents on the left are combined to
predict a second-order internal multiple on the right.

Therefore, not only the first-order internal multiples but also the higher-order internal

multiples are predicted when both primary events and internal multiple events are combined

as subevents in D3.

In the following, I will demonstrate that these predicted higher-order internal multiples

benefit the attenuation of higher-order internal multiples in the data. In other words, the

second term of the ISS internal multiple attenuation algorithm (D3) has the specific role of

(1) predicting all the first-order internal multiples (used to attenuate the first-order internal

multiples in the data) and (2) predicting all higher-order internal multiples (used to benefit

attenuating higher-order internal multiples in the data, as this section will show in the

following).

The property of each term within a subseries having specific roles and different terms

working cooperatively to achieve the specific task associated with that subseries is referred to

as purposeful perturbation (Weglein et al., 2003). The fact that, D3 benefits the attenuation

of higher-order internal multiples in the data together with subsequent terms (e.g., D5 and

D7), demonstrates the property of purposeful perturbation in the ISS internal multiple
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attenuation subseries.

Before I show the property of purposeful perturbation in the ISS internal multiple case, I

will first review an example of purposeful perturbation in the ISS free-surface multiple case,

and then compares the analogous and different points.

3.1.1 Example of purpose perturbation in the ISS free-surface multiple removal case

Following Weglein et al. (2003), I illustrate the purposeful perturbation in ISS free-surface

removal case using a 1D normal incident example. In a 1D earth with a normal incident

plane wave and a source wavelet with a unit amplitude, i.e., B(ω) = 1, the algorithm can

be written as (Weglein et al., 2003):

R =
RFS

1−RFS

=RFS +R2
FS +R3

FS + · · · , (3.7)

where RFS and R are data with and without free-surface multiples, respectively. Notice

that the free-surface is characterized by a reflection coefficient of -1 for a pressure wavefield.

Similarly, I can consider the second term in equation 3.7 as the prediction of the first-order

free-surface multiples and the third term as the prediction of the second-order free-surface

multiples, etc.

I use a 1D analytic example to illustrate the prediction of the free-surface multiples. The

model (Figure 3.3) has two reflectors, and the input data (Equation 3.8) with two primaries

(black terms), three first-order (blue terms) and four second-order (red terms) free-surface
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multiples, can be written as:

RFS(t) = R1δ(t− t1) +R′2δ(t− t2)−R2
1δ(t− 2t1)−R′22 δ(t− 2t2)− 2R1R

′
2δ(t− t1 − t2)

+R3
1δ(t− 3t1) +R′32 δ(t− 3t2) + 3R1R

′2
2 δ(t− t1 − 2t2) + 3R2

1R
′
2δ(t− 2t1 − t2) + · · · ,

(3.8)

where R1 and R′2 are amplitudes of the first and second primaries, respectively. R′2 =

T01R2T10. The assumption is the downward reflection coefficient at the free-surface to be

-1.

Fig. 3.3: A one dimensional model with two reflectors. Notice that, the figure only shows two
primaries and three first-order free-surface multiples.

In the temporal frequency domain, the data are

RFS(ω) = R1e
iωt1 +R′2e

iωt2−R2
1e
iω2t1 −R′22 eiω2t2 − 2R1R

′
2e
iω(t1+t2)

+R3
1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2) + · · · . (3.9)

With equation 3.9, the second and third terms in equation 3.7 are

R2
FS(ω) = R2

1e
iω2t1 +R′22 e

iω2t2 + 2R1R
′
2e
iω(t1+t2)

−6R1R
′2
2 e

iω(t1+2t2) − 6R2
1R
′
2e
iω(2t1+t2) − 2R3

1e
iω3t1 − 2R′32 e

iω3t2 + · · · , (3.10)
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and

R3
FS(ω) = R3

1e
iω3t1 +R′32 e

iω3t2 + 3R1R
′2
2 e

iω(t1+2t2) + 3R2
1R
′
2e
iω(2t1+t2) + · · · , (3.11)

respectively.

From equation 3.10, It is concluded that (e.g., Weglein et al. (2003)) when R2
FS(ω) is added

to RFS(ω), two things happen: (1) The first-order free-surface multiples are eliminated (blue

terms in equations 3.9 and 3.10 cancel each other) and (2) Higher-order free-surface multiples

are altered. Together with R3
FS(ω), second-order free-surface multiples are eliminated (red

terms in equations 3.9, 3.10 and 3.11 cancel each other) as shown in equation 3.12.

RFS(ω) : 1× [R3
1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2)]

R2
FS(ω) : −2× [R3

1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2)]

R3
FS(ω) : 1× [R3

1e
iω3t1 +R′32 e

iω3t2 + 3R1R
′2
2 e

iω(t1+2t2) + 3R2
1R
′
2e
iω(2t1+t2)] (3.12)

The alteration in R2
FS(ω) prepares for the elimination of second-order free-surface multiples

using R3
FS(ω).

Next, we further categorize the results as follows. Consider the input data containing

primary and free-surface multiples, i.e.,

RFS(ω) = P + F,

where P and F stand for primaries and free-surface multiples, respectively.

Therefore, R2
FS(ω) can be expressed as

R2
FS(ω) = (P + F )2 = PP + PF + FP + FF.
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Under this categoration, the blue and red terms in equation 3.10 come from combinations

of PP and PF (or FP ) terms, respectively. Together with the 1D analytic example, we

conclude that the PP combination in R2
FS(ω) is used to eliminate the first-order free-surface

multiples, whereas the PF (or FP ) combination in R2
FS(ω) is used to alter and benefit the

elimination of the second-order free-surface multiples.

In this part, I use a 1D analytic example to exemplify the necessity of including both

primaries and free-surface multiples in the input of the ISS free-surface multiple elimination

algorithm in order to completely eliminate the free-surface multiples. Within the analytic

example, the ISS free-surface elimination algorithm demonstrates the collaborative nature

among the different terms in collectively fulfilling the task. It is interesting that the ISS

free-surface-multiple elimination algorithm anticipates that there are both primaries and

free-surface multiples as input and uses both of them to achieve that task. In the next

part, I will use a two-reflector example to discuss an analogous feature in the ISS internal-

multiple-attenuation case, and I will analyze the difference between these two cases.

3.1.2 Example of purposeful perturbation in the ISS internal multiple attenuation case

In this part, I will use a normal incident example in 1D earth to illustrate the cooperative

nature between different terms in ISS internal multiple attenuation algorithm.

Also, to categorize the result, consider the input data containing primaries and internal

multiples, i.e.,

b1 = P + I,

where P and I stand for primaries and internal multiples, respectively. The prediction
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result of the attenuator of the first-order internal multiples is

b3 =b1 ∗ b1 ∗ b1

=(P + I)(P + I)(P + I)

=PPP + PPI + PIP + IPP + PII + IPI + IIP + III, (3.13)

where ∗ represents the non-linear combination between data. Further analysis shows that

the prediction of the first-order internal multiples (the blue term in equation 3.6) results

from PPP combinations and prediction of all other higher-order internal multiples (red

terms in equation 3.6) results from PPI (or IPP or IPI) combinations.

To summarize analogous points in the free-surface multiple and internal multiple cases: (1)

both first-order and higher-order multiples are predicted in R2
FS and or b3; and (2) higher-

order multiples are predicted because of the lower-order multiples in the input data entering

as subevents.

In last part, it was shown that the second-order free-surface multiples predicted by R2
FS(ω)

are used to eliminate the second-order free-surface multiple, see equation 3.12. Next, I will

show the second-order internal multiples predicted by D3 (the first two red terms in 2.22)

will assist and benefit the attenuating of second-order internal multiples in the seismic data.

Let’s first examine the prediction result from the attenuator of second-order internal mul-

tiples (i.e., equation 2.15 when n = 2). For 1D normal incident spike date, it is

b5(k) =

∫ ∞
−∞

dz1e
ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞
z2+ε

dz3e
ikz3b1(z3)

×
∫ z3−ε

−∞
dz4e

ikz4b1(z4)

∫ ∞
z4+ε

dz5e
−ikz5b1(z5). (3.14)
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Given equation 3.14, the prediction result using the same input data (equation 3.1) is

D5(t) = R′32 R
2
1δ(t− (3t2 − t1)) + · · · = T 3

01T
3
10R

3
2R

2
1δ(t− (3t2 − 2t1)) + · · · . (3.15)

This is the prediction of the second-order internal-multiple from the attenuator of the

second-order internal multiples.

To summerize, the actual second-order internal multiple in the data D(t), the second-order

internal-multiple prediction in D3(t), and D5(t) are

D(t) : 1× [T01T10R
3
2R

2
1δ(t− (3t2 − 2t1))],

D3(t) : (−2T01T10 + (T01T10R1)
2)× [T01T10R

3
2R

2
1δ(t− (3t2 − 2t1))],

D5(t) : (T01T10)
2 × [T01T10R

3
2R

2
1δ(t− (3t2 − 2t1))], (3.16)

respectively. Comparing equations 3.12 and 3.16, I find analogous roles of the higher-

order internal-multiple prediction in D3(t), i.e., the prediction of the second-order internal

multiples by D3(t) assists and benefits the attenuating of higher internal multiples in the

data.

Similar to the ISS free-surface multiple removal case, the ISS internal multiple attenuation

algorithm anticipates that both the primaries and internal multiples will be the input, and

uses both types of events to attenuate internal multiples in the data.

Next, we show a numerical example in 1D case to demonstrate the purposeful perturbation

between different terms in the ISS internal multiple attenuation algorithm to collectively

achieve the attenuation of internal multiples. Figure 3.4 shows the test data we use (shown

in the pseudo-depth domain). Figure 3.5a, 3.5b and 3.5c shows the comparison between the

input data (before attenuating internal multiples) and the output data (after attenuating

internal multiples) when adding different prediction terms in equation 2.16.
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Fig. 3.4a: Input data in pseudo-depth domain. Blue and purple lines represent primaries and
internal multiples, respectively. There are two primaries at depths 10 and 13 and three
internal multiples at pseudo-depths 16 (first-order), 19 (second-order), and 22 (third-
order).

Fig. 3.4b: A zoom-in of Figure 3.4a in the range of 10− 35.
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Fig. 3.5a: Comparison between D (blue) and D + D3 (purple). The comparison shows the con-
tributions of D3 are (1) reducing the first-order internal multiples and (2) altering the
amplitude of the higher-order internal multiples. Notice that, only internal multiples
are plotted in D.

Fig. 3.5b: Comparison between D (blue) and D + D3 + D5 (purple). Adding D5 to D + D3 will
further reduces second-order internal multiple.
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Fig. 3.5c: Comparison between D (blue) and D+D5 (purple). Without the contribution from D3,
D+D5 will increase the amplitude of the second-order internal multiple. In other words,
alteration of higher-order internal multiples by D3 is necessary for their attenuation.

3.2 General output from b3 in a three or more reflector example

In the last section, I use both analytic example and numerical example in a two-reflector

model analyze the general output from the attenuator of the first-order internal multiples.

In this section, I proceed to examination of a more complicated case where data is generated

from a three-reflector model (Figure 3.6). In this example, I include one more primary from

the third reflector in the input data.

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′4δ(t− (2t2 − t1)) +R′3δ(t− t3) + · · · , (3.17)

where R′2 and R′4 are the same as in equation 3.1, and R′3 = T01T12R3T21T10 is the amplitude

of the third primary.

Given these data, following the same procedure from equation 3.1 to equation ??, the
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Fig. 3.6: A one dimensional model with two reflectors. There are two primaries and one first-order
internal multiple shown in the figure.

prediction result from the attenuator of the first-order internal multiples is:

D3(t) =R1(R
′
2)

2δ(t− (2t2 − t1)) + 2R1R
′
2R
′
3δ(t− (t2 + t3 − t1))

+R1(R
′
3)

2δ(t− (2t3 − t1)) +R2(R
′
3)

2δ(t− (2t3 − t2))

+2R1R
′
2R
′
4δ(t− (3t3 − 2t1)) +R′2(R

′
4)

2δ(t− (3t3 − 2t2))

+2R1R
′
3R
′
4δ(t− (t3 + 2t2 − 2t1)) +R1(R

′
4)

2δ(t− (4t2 − 3t1))

+2R′2R
′
3R
′
4δ(t− (t3 + t2 − t1))

+(R′3)
2R′4δ(t− (2t3 − (2t2 − t1))). (3.18)

Similarly to result 3.6, result 3.18 has the predictions of the first-order internal multiples

(blue terms) and higher-order internal multiples (red terms). However, the last term is

neither a primary nor an internal multiple. This prediction is called a spurious event.

Further examination shows that this spurious event results from the PIP combination

(Figure 3.7), hence, this type of spurious events (caused by “primary-internal multiple-

primary”) is denoted as PIP type spurious events. Notice that, I assume 2t2 − t1 < t3 in

deriving result 3.18. This assumption is required by “lower-higher-lower” relationship to

combine “primary (t3)-internal multiple (2t2 − t1)-primary (t3)” in b3.

Figure 3.7 illustrates the simplest case where a PIP type spurious event can happen. This
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Fig. 3.7: In a three-reflector example, a “primary-internal multiple-primary” can be combined to
produce a spurious prediction.

type of spurious events can be produced when there are three or more reflectors and certain

timing relationship occurs (e.g., 2t2 − t1 < t3 in Figure 3.7).

Besides the PIP type of spurious events, other types of spurious events exist (Liang et al.,

2013). For example, Figure 3.8 illustrates a case where a PPI type spurious event (caused by

“primary-primary-internal multiple”). Similarly, it can be shown that this type of spurious

events can be produced when there are four or more reflectors and certain timing relationship

occurs (e.g., 2t2 − t1 > t3 in Figure 3.8)

Fig. 3.8: In a four-reflector example, a “primary-primary-internal multiple” can be combined to
produce a spurious prediction.

It can be shown that additional types of spurious events can be generated when two internal

multiple subevents (e.g., “primary-internal multiple-internal multiple”, denoted by PII) or

three internal multiple subevents (“internal multiple-internal multiple-internal multiple”,

denoted by III) are combined by the attenuator of the first-order internal multiples.
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To summarize the general output from the attenuator of the first-order internal multiples

(i.e., D3) when both primaries and internal multiples are present in the data and combined

by the attenuator, the general output consists of

1. prediction of all first-order internal multiples (used to attenuate all first-order internal

multiples in the input data);

2. prediction of all higher-order internal multiples (used to benefit and assist the attenu-

ation of all higher-order internal multiples in the input data, together with prediction

of higher-order internal multiples from subsequent terms, e.g., D5 and D7);

3. spurious events when the input data is generated from a three or more reflector model

and certain timing relationship occurs.

As it was demonstrated in the previous section, the ISS internal-multiple-removal subseries

anticipates that both primaries and internal multiple are present in the input of the current

leading-order ISS internal multiple attenuation algorithm and uses both of them to attenuate

internal multiples of all orders by collectively cooperation between different terms, the ISS

internal multiple removal subseries also anticipates spurious events can be produced from

this leading-order algorithm and higher-order terms from the subseries can be identified to

precisely address the spurious events generation.

3.3 An ISS data comprehensive internal-multiple-attenuation algorithm

that accommodates primaries and internal multiples in the input

data

Higher-order terms can be identified from the ISS internal-multiple-removal subseries to

address the spurious events. Including these higher-order terms to the current leading-

order algorithm provides a data comprehensive ISS internal multiple attenuation algorithm
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removes the generation of spurious events and, at the same time, retains the unique effec-

tiveness of current algorithm1.

Guided by the origin of spurious events, higher-order terms are identified to precisely ad-

dress the spurious events. For example, to address a spurious events generated by com-

bining “primary-internal multiple-primary”, a portion of the fifth order term from the ISS

(G0V1G0V3G0V1G0) can be employed to address the PIP spurious events. In 1D normal

incident case, it was expressed as follows

bPIP5 (k) =

∫ ∞
−∞

dz1e
ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b3(z2)

∫ ∞
z2+ε

dz3e
ikz3b1(z3), (3.19)

where b1(z) is has the same meaning as that in equation 2.17 and b3(z) is the attenuator of

the first-order internal multiples expressed in pseudo-depth domain in 1D normal incident

case. The superscript on the left hand side of this equation (i.e., PIP ) represents this

higher-order term is used to address the spurious events generated by “primary-internal

multiple-primary”.

Including term bPIP5 to the current algorithm provides the benefit of the original algorithm

while addressing issues due to spurious events

DIM (t) = D(t) +D3(t) +DPIP
5 (t), (3.20)

where DPIP
5 (t) is the Inverse Fourier transform of DPIP

5 (ω), and DPIP
5 (ω) = bPIP5 (k).

Compared with the original algorithm (equation 2.16), the new algorithm includes a portion

of the higher order term (bPIP5 ) to address the PIP spurious events.

Using the same logic and analysis, other higher-order terms are identified to address other

types of spurious events. For example, bPPI5 is identified to address the spurious events

1For the scope of this dissertation, the data comprehensive algorithm focuses on attenuating all first-order
internal multiples and addressing the generation of spurious events.
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generated by “primary-primary-internal multiple”.

bPPI5 (k) = 2

∫ ∞
−∞

dz1e
ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞
z2+ε

dz3e
ikz3b3(z3), (3.21)

Since this type of spurious event could be produced by the attenuator using a first-order

internal multiple subevent in either of the outer integrals (these two cases are equivalent),

there is a coefficient 2 in the equation.

It can be shown that, after including all terms used to address different types of spurious

events to the current algorithm, the new data comprehensive algorithm boils down to the

same form as the current algorithm. The new algorithm that attenuates all first-order

internal multiples in the data and addresses spurious events can be expressed, in 1D normal

incident case, as follows

DIM (t) = D(t) +D3(t) +DPIP
5 (t) +DPPI

5 (t) + · · ·︸ ︷︷ ︸
D3(t)

,

= D(t) + D3(t), (3.22)

where D(t) is the input data consisting of primaries and internal multiples, D3(t) is the

prediction of all first-order internal multiples with the addressing of spurious events, and

DIM (t) is the output data with both all the first-order internal multiples attenuated and

spurious events addressed.

Mathematically, it is equivalent to compute D3(t) directly from D3(ω) = bNew3 (k), where

bNew3 (k) =

∫ ∞
−∞

dz1e
ikz1 [b1(z1) + b3(z1)]

∫ z1−ε

−∞
dz2e

−ikz2 [b1(z2) + b3(z2)]

×
∫ ∞
z2+ε

dz3e
ikz3 [b1(z3) + b3(z3)]. (3.23)

In equation 3.23, b1(z) and b3(z) has the same meaning as in equation 2.17. Notice that
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equation 3.23 and equation 2.17 have the same form but different integrand. Equation 3.23

can predict all first-order internal multiples and address spurious events by using a new

integrand with internal multiples reduced (i.e., b1(z) + b3(z))

Equation 3.22 can be easily extended to a multi-dimensional case. In multi-dimensional

case, the data comprehensive algorithm can be written as (in comparison with equation

2.13)

DIM (kg, ks, ω) = D(kg, ks, ω) + D3(kg, ks, ω), (3.24)

Similarly, D3(kg, ks, ω) = (−2iqs)
−1bNew3 (kg, ks, ω), and bNew3 (kg, ks, ω) can be computed

directly from

bNew3 (kg, ks, ω) =
1

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1[b1(kg, k1, z1) + b3(kg, k1, z1)]e
i(qg+q1)z1

×
∫ z1−ε

−∞
dz2[b1(k1, k2, z2) + b3(k1, k2, z2)]e

−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3[b1(k2, ks, z3) + b3(k2, ks, z3)]e
i(q2+qs)z3 . (3.25)

In equation 3.25, b1(kg, ks, z) and b3(kg, ks, z) has the same meaning as in equation 2.13.
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4. NUMERICAL TESTS OF THE ISS DATA COMPREHENSIVE

INTERNAL MULTIPLE ATTENUATION ALGORITHM

In this chapter, I will apply the extended ISS data-comprehensive internal multiple atten-

uation algorithm to synthetic data sets to examine and demonstrate the added value from

the extended algorithm. The tests are carried out in both 1D normal incident and 2D cases.

In 1D normal incident case, I will first use a synthetic data set from a simple four-reflector

model to explicitly examine the effectiveness of the extended data comprehensive algorithm

to accommodate both primaries and internal multiples as subevents. Then, I proceed to

more realistic and complicated cases where synthetic tests are carried out on realistic well-

log based data sets. The numerical test results show the significance and added value of

including the higher-order ISS terms where there are many reflectors. The 2D test focuses

on code implementation of the extended algorithm using a simple three-reflecor example in

2D case.

4.1 1D normal incident case

In the first test, I use a four-reflector 1D model to generate the synthetic data set. Figure

4.1 shows the model and parameters. Synthetic data set (shown in Figure 4.2a) which

consists of primaries and internal multiples is generated by reflectivity method with a ricker

wavelet which has a 25 Hz peak frequency. With this synthetic data set as input, two

prediction results can be obtained from the current and extended algorithm. Figure 4.2b

and 4.2c compares the data (D(t)) with the prediction result from the current (−D3(t)) and
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extended (−D3(t)) algorithm, respectively. Notice here, I flip the polarity of the prediction

result for easy comparison with the data itself in Figures 4.2b and 4.2c.

Fig. 4.1: A model with four horizontal reflectors to generate synthtic data set.

In the next two tests, I will first use information from field well-log data to generate 1D

model with parameters (e.g., depth of the reflectors, velocity and density for each layer)

closer to real geology. Then, based on the 1D model derived from well-log data, synthetic

data sets consisting of primaries and internal multiples are generated using reflectivity

method.

Figure 4.3 shows the velocity model model derived from the well-log data of Saudi Arabian

Oil Co.. Using this velocity model, I use reflectivity method and a ricker wavelet with 25

Hz peak frequency generate synthetic data consist of primaries and internal multiples.

Figure 4.4a and Figure 4.4b shows the comparison between the actual first-order internal

multiples in the data and the prediction result from the current and extended algorithm.

respectively. Compared with the model shown in Figure 4.1, the model shown in Figure

4.3 contains much more reflectors, therefore, synthetic data set generated by this model

will be much more complicated and consists of many events. Furthermore, events are no

longer isolated from each other. Hence, it is difficult/impossible to label events with their
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Fig. 4.2a: Synthetic data set(D(t)) generated using model 4.1. There are four primaries (P1, P2,
P3, P4,) corresponding four reflectors, and four internal multiples (I212, I21212, I213,
I323). Numbers in the subscript represent the location where reflections happen. For
example, P1 corresponds to the primary with the upward reflection at the first reflecto
while I212 corresponds to the first-order internal multiple with reflections at the second-
first-second reflector. Notice that I21212 is a second-order internal multiple. In the figure,
primaries and internal multiples are represented by blue and red, respectively.

Fig. 4.2b: Comparison between the data (i.e., D(t), blue for primaries and red for internal mul-
tiples) and prediction result (green for prediction) from the current algorithm (i.e.,
−D3(t)). The comparison shows that four internal multiples (around 1.4s, 1.9s, 2s, and
2.1s) are predicted with accurate time and approximate amplitude. However, besides
the prediction of internal multiples, a non-physical event is produced which happens to
interference with the target primary (around 1.6s). Without knowing the event around
1.6s is a non-physical event, the target primary could be misinterpreted as an internal
multiple.
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Fig. 4.2c: Comparison between the data (i.e., D(t), blue for primaries and red for internal multi-
ples) and prediction result from the extended algorithm (i.e., −D3(t), green for predic-
tion). Comparing prediction result from Figure 4.2b and prediction result shown in this
figure demonstrates that the extended algorithm retains the effectiveness in predicting
internal multiples while addresses non-physical events at the same time.

reflections as in the previous simple four-reflector test. Comparing these two predictions, it

is concluded that, the extended algorithm further improves the effectiveness of predicting

internal multiples by reducing the spurious events.

Fig. 4.3: Velocity model used to generate synthetic data (courtesy of Saudi Arabian Oil Co.).

A similar test is carried out based on well-log data from Kuwait Oil Company (KOC).

Figure 4.5 shows velocity and density variations as a function of depth derived from well-

log data from KOC. Compared with the model in the last test, the model in this test

contains more reflectors. Hence, the synthetic data generated in this test will be further

more complicated. In Figure 4.6a and 4.6a, I provide the comparisons between actual
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Fig. 4.4a: Comparison between the actual first-order internal multiples (in blue) and prediction
result (i.e., −D3(t) in red) from the current algorithm. The prediction result from the
current algorithm is very close to the actual first-order internal multiples in the data.
However, there are several noticeable disagreement between the actual the prediction
from the current algorithm highlighted by arrows

Fig. 4.4b: Comparison between the actual first-order internal multiples (in blue) and prediction
result (i.e., −D3(t) in red) from the current algorithm. Compared with the prediction
result from the current algorithm in Figure 4.4a, this extend algorithm delivers further
effectiveness in predicting internal multiples (highlighted by arrows) in the cases where
there are many reflectors as analyzed in the last chapter.
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internal multiples of all orders in the data and prediction result from the current and

extended algorithm, respectively. Similarly, this test further demonstrates the added value

in predicting internal multiples accurately with the extended algorithm.

Fig. 4.5: Velocity and density blocking from well-log data (courtesy of Kuwait Oil Company).

4.2 2D case

In this section, we test the extended algorithm in 2D case. Figure 4.7 shows the model

used to generated synthetic data set consists of primaries and internal multiples with finite

difference method. Notice there are three reflectors in this model with a trench in the middle

of the model. Parameters in this model are choose to generate strong internal multiples in

the data. For example, normal incident reflection coefficient corresponding to the second

reflector is around 0.8, which is very rare in real geological cases. The synthetic data consist
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Fig. 4.6a: Comparison between actual internal multiples of all orders (in blue) and prediction (i.e.,
−D3(t) in red) from current algorithm.

Fig. 4.6b: Comparison between actual internal multiples of all orders (in blue) and prediction (i.e.,
−D3(t) in red) from extended algorithm.
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Fig. 4.7: Synthetic velocity and density model used to generate the test data in this section
(courtesy of WesternGeco). The average dip of the walls of the trench featuring in the
center of the model is approximately 20 degree (Figure adapted from Terenghi and Weglein
(2011)).

of 251 shots × 251 receivers, with both shot- and receiver-interval of 25 m, each trace has

501 samples with a total duration 4s.

Figure 4.8a and Figure 4.8b show the several trace comparisons between the actual internal

multiples (in red) in the data and prediction results (in blue) from the current and extended

algorithm, respectively. The comparisons shown in Figure 4.8 demonstrated in extended

algorithm, in 2D case, can provide further effectiveness on prediction internal multiples in

the data.
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Numerical tests

Fig. 4.8a: A shot comparison between the test data (left part) and the ISS internal multiple
prediction (right part) without addressing the spurious events.

Fig. 4.8b: A shot comparison between the test data (left part) and the ISS internal multiple pre-
diction (right part) with addressing the spurious events.
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5. USE OF MULTIPLES TO OBTAIN AN APPROXIMATE IMAGE

OF AN UNRECORDED PRIMARIES TO ENHANCE THE

SUBSURFACE STRUCTURAL IMAGING

This chapter provides the study of using multiples to enhance subsurface structural imaging

when there is an inadequate collection of primaries by obtaining an approximate image of

unrecorded primaries.

As described in the Introduction, multiples have more than one upward reflections, and 

involve the cumulative effect of more than one reflection interactions. The relationship be-

tween multiples and earth is more complicated than the relationship between the primaries 

and earth. The primary-only assumption simplifies the processing of seismic data for deter-

mining the spatial locations and mechanical property change. Multiples in that process will 

result in a false, misleading and potentially injurious subsurface image, and hence multiples 

need to be predicted and removed from the data. Hence, seismic imaging and inversion 

algorithms assumes the input data consists of only primaries and removal of multiples is a 

pre-requisite.

However, whereas imaging requires only primaries, circumstances exist in which the ex-

tent, sampling and acquisition of primaries is incomplete and less than adequate to achieve

imaging objectives. Researchers (e.g., Berkhout and Verschuur (1994); Shan (2003); Muijs

et al. (2007); Whitmore et al. (2010); Lu et al. (2011) and Valenciano et al. (2014)) seek-

ing methods that use multiples to extract an approximate image of unrecorded primaries

were influenced and inspired by the Claerbout imaging condition II (designed for imaging
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Fig. 5.1: Illustration of the basic principle of reflector mapping. Figure adapted from Claerbout
(1971).

primaries).

Claerbout (1971) introduces the reflector mapping principle (referred to as Claerbout imag-

ing condition II in Weglein (2016)): “reflectors exist at points in the ground where the first

arrival of the downgoing wave is time coincident with an upgoing wave”. The reflector

mapping principle for a single shot can be expressed by

Map(x, z) = U(x, z, td)/D(x, z, td), (5.1)

where x and z are horizontal and vertical coordinates, respectively; td is the time of the

first arrival on the downgoing wave D(x, z, t).

Figure 5.11 illustrates the basic principle of reflector mapping. There will be overlap in

time of the downgoing (D) and upgoing waves (U) at a point which is at or near a reflector

(e.g., point P2 in Figure 5.1). That time overlap can be used in the construction of a map

of reflection positions. Because td is unknown, a practical way to imaging the reflector is to

1Adapted from Claerbout (1971).
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compute the zero lag of the crosscorrelation of the source and receiver wavefield. This can

be expressed by equation 5.2.

Map(x, z) =

∫
U(x, z, ω)D∗(x, z, ω)dω, (5.2)

where U(x, z, ω) and D(x, z, ω) are Fourier Transform over time of U(x, z, t) and D(x, z, t),

respectively. ∗ means complex conjugate. Equation 5.2 can be expressed in time domain as

follows:

Map(x, z) =

∫
U(x, z, t)D(x, z, t)dt. (5.3)

Next, an analytic example is provided to illustrate the use of equation 5.2 to locate a

Fig. 5.2: Image of a recorded primary.

reflector. Consider a 1D normal incident plane wave that starts at εs at t = 0, the plane

wave travels down from the source to the reflector at depth d, and hits the reflector and

travels upward to the receiver at εg (Figure 5.2). In this simple experiment, the D and U

waves are

D(z, ω) = e
iω[ z−εs

c0
]
, (5.4)

U(z, ω) = R1e
iω[ d−εs

c0
+ d−z

c0
]
, (5.5)

respectively, where R1 is the reflection coefficient, c1 is the velocity.

54



Summary

With equations 5.4 and 5.5, equation 5.2 produces

Map(x, z) =

∫
U(x, z, ω)D∗(x, z, ω)dω

=

∫
(R1e

iω[ d−εs
c0

+ d−z
c0

]
)(e
−iω[ z−εs

c0
]
)dω

=

∫
R1e

iω[ 2d−2z
c0

]
dω

=
c0
2
R1δ(d− z). (5.6)

That is, equation 5.2 correctly locate the reflector at depth d.

Fig. 5.3: Image of an unrecorded primary.

For the purpose of using a multiple to find an approximate image of an unrecorded primary,

we consider the field U (in equation 5.2) as the source-and-receiver deghosted first-order

multiple (represented by the black-green-red line in Figure 5.3), −R2
1e
iω[ d−εs

c0
+ 2d
c0

+ d−z
c0

]
, and

the field D as the source-deghosted, but the receiver ghost of the primary (represented by

the black line in Figure 5.3) that is a subevent of a recorded multiple, −R1e
iω[ d−εs

c0
+ d+z

c0
]
.

That interpretation of equation 5.2, with that input D and U , will produce an appropriate
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image of the unrecorded subevent of the multiple,

Map(x, z) =

∫
U(x, z, ω)D∗(x, z, ω)dω

=

∫
(−R2

1e
iω[ d−εs

c0
+ 2d
c0

+ d−z
c0

]
)(−R1e

−iω[ d−εs
c0

+ d+z
c0

]
)dω

=

∫
R3

1e
iω[ 2d−2z

c0
]
dω

=
c0
2
R3

1δ(d− z). (5.7)

Within that understanding, we use a 1D prestack example to examine the imaging result of

an unrecorded primary that we can extracted from multiples following Claerbout’s imaging

condition II. I provide a 1D prestack numerical example, based on a one horizontal reflector

model, to examine the result of approximately imaging an unrecorded primary extracted

from a recorded multiple. The image results are obtained by the following equation:

Map(x, z) =

∫
U(x, z, t)D(x, z, t)dt. (5.8)

Fig. 5.4: A test model for a case of a single horizontal reflector.
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The test data are generated from a model that contains one horizontal reflector (Figure

5.4). In imaging the recorded primary (Figure 5.5), the downgoing wavefield that is being

forward propagated is the source wavefield, and the upgoing wavefield that is being backward

propagated is the primary. In imaging the unrecorded primary (Figure 5.5), the downgoing

wavefield that is being forward propagated is the receiver-side ghost of the primary, and the

upgoing wavefield that is being backward propagated is the source-receiver-side-deghosted

first-order free-surface multiple.

Fig. 5.5: result from imaging a primary fol lowing Claerbout’s imaging condition II.

Comparing the result in Figure 5.5 with the result in Figure 5.6, we note that the reflector

is correctly imaged in both results. However, the image from the unrecorded primary

(extracted from a multiple) shows broader illumination (with smaller image amplitude)

compared with the image from the recorded primary.

It is important to point out that in obtaining the result of Figure 5.6 in this synthetic ex-

ample, we purposefully chose the receiver-side ghost of the primary and the source-receiver-

side-deghosted first-order free-surface multiple as the down-going (D) and up-going (U)

wavefields, respectively. Methods that seek to obtain an approximate image of an un-
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Fig. 5.6: result from imaging an extracted primary from a first-order free-surface multiple following
Claerbout’s imaging condition II.

recorded primary require an effective up-down wavefield separation, which can be achieved

by modern seismic acquisition techniques (e.g., GeoStreamer or over/under cable). Notice

that, among different combinations between the downgoing and upgoing events, cross-talk

artifacts can happen (e.g., Lu et al. (2011)).
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6. SUMMARY

The current ISS internal multiple attenuation algorithm has shown differential added-value,

in comparison with other internal multiple suppression methods for complex exploration

areas where internal multiple generators are difficult to be identified. This algorithm has

been recognized as the most capable internal multiple suppression method by the petroleum

industry.

The ISS internal multiple attenuation algorithm consists of the ISS internal multiple atten-

uators of different orders. Each internal multiple attenuator of given order uses primaries in

the input data to predict internal multiples of that order from all reflectors at once with ac-

curate time and approximate amplitude and without subsurface information. However, the

input data consist of both primaries and internal multiples. This dissertation shows when

the internal multiples in the input data enter the ISS attenuator of a given order, they (1)

contributes to higher-order internal multiple removal and (2) under certain circumstances

can cause false or spurious events. Terms in the internal multiple removal subseries, which

are of higher order than the ISS internal multiple attenuator, have the purpose and capa-

bility of addressing a shortcoming of its lower order and less accommodating relative.

The new internal multiple algorithm within this dissertation combines the original lower or-

der attenuation algorithm with the inclusion and assist of the higher order terms, providing

a comprehensive internal multiple attenuator that can accommodate primaries and internal

multiples in the input data. That new higher-order algorithm provides all the benefit of the

original ISS internal multiple attenuation algorithms without its deficits and shortcomings.
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This first part of this dissertation contributes to identifying those higher-order terms, and

examining, testing and analyzing the relevant and practical benefit provided by this higher-

order algorithm. Synthetic tests demonstrated this higher-order algorithm retains the same

effectiveness of the original algorithm and now can accommodate both primaries and in-

ternal multiples as input. This dissertation is also part of an overall strategy to use the

ISS to provide further capability for internal multiple prediction and removal in extremely

complicated onshore and offshore exploration cases.

In principle, only primaries are called for to determine structure and to identify subsurface

properties. Multiples, along with reference wave, ghosts, need to be predicted and removed

from the seismic data in order to obtain the primary-only input to the imaging and inversion

methods. However, when the collection of primaries is incomplete and less than adequate,

then the predicted multiples can, at times, be used to provide an approximate image of

unrecorded primaries. The latter can supplement the subsurface structural image from

recorded primaries. The second part of this dissertation studies the procedure of using

multiples to provide an approximate image of unrecorded primaries. A numerical example

illustrates the added-value from that procedure.

In summary, this dissertation contributes to two important topics in exploration seismology,

(1) identifying and removing multiples and (2) using multiples. This dissertation shows

multiples can be used to provide an approximate image of unrecorded primaries to enhance

the subsurface structural from recorded primaries. However, multiples need to be first

predicted and removed from the data before imaging the recorded primaries for processing

goals that seek to effectively locate and invert reflections. The removal of multiples remains

a key open issue, and high priority pressing challenge. This dissertation is part of an overall

strategy to use the ISS to provide further capability for internal multiple prediction and

removal in extremely complicated onshore and complex offshore exploration cases.
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A. DERIVATION OF EQUATION 3.20

One portion of the fifth order term in the ISS is capable of predicting the artifacts we want

to remove. Start from the fifth order equation,

V5 =− V1G0V1G0V1G0V1G0V1 − V2G0V1G0V1G0V1 − V1G0V2G0V1G0V1 (A.1)

− V1G0V1G0V2G0V1 − V1G0V1G0V1G0V2 − V3G0V1G0V1

− V1G0V3G0V1 − V1G0V1G0V3 − V4G0V1 − V1G0V4

Inspired by the analog between the forward and inverse series and the logic of constructing

internal multiple using primaries, V57 = V1G0V3G0V1 is chosen for further study. Using

effective data in the pseudo-depth domain to express it as (Ramirez, 2007),

B57(k) =

∫ ∞
−∞

dzb1(z)

∫ ∞
−∞

dz′b̂3(z
′)

∫ ∞
−∞

dz′′eikz
′′
b1(z

′′) (A.2)

+

∫ ∞
−∞

dzb1(z)

∫ ∞
−∞

dz′e−ikz
′
b̂3(z

′)

∫ ∞
−∞

dz′′b1(z
′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
−∞

dz′e−ikz
′
b̂3(z

′)

∫ ∞
−∞

dz′′eikz
′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
−∞

dz′b̂3(z
′)

∫ ∞
−∞

dz′′b1(z
′′)

where b̂3(z
′) is the data representation of one portion of third order terms such that b̂3(z

′)

can be employed to predicted the artifacts.

To make sure the prediction of the correct time, the third term is chosen, and in order

to satisfy the ”lower-higher-lower” requirement in the pseudo-depth domain, the rightmost
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and middle integral limits are further separated as follows,

B573(k) =

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
−∞

dz′e−ikz
′
b̂3(z

′)

∫ ∞
−∞

dz′′eikz
′′
b1(z

′′) (A.3)

=

∫ ∞
−∞

dzeikzb1(z)(

∫ z−ε

−∞
+

∫ z+ε

z−ε
+

∫ ∞
z+ε

)dz′e−ikz
′
b̂3(z

′)

× (

∫ z′−ε

−∞
+

∫ z′+ε

z′−ε
+

∫ ∞
z′+ε

)dz′′eikz
′′
b1(z

′′)

=

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b̂3(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b̂3(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b̂3(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b̂3(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b̂3(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b̂3(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b̂3(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b̂3(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b̂3(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

From the above separation, we choose the third term since it satisfies the requirement in

the pseudo-depth domain. Then we examine the third order term to determine b̂3(z
′);

V3 = −V1G1V1G0V1 − V2G0V1 − V1G0V2. (A.4)

For the same reason, V1G1V1G0V1 is chosen to further study. Expressing this term using
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effective data and doing the separation,

B3(k) =

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
−∞

dz′e−ikz
′
b1(z

′)

∫ ∞
−∞

dz′′eikz
′′
b1(z

′′) (A.5)

=

∫ ∞
−∞

dzeikzb1(z)(

∫ z−ε

−∞
+

∫ z+ε

z−ε
+

∫ ∞
z+ε

)dz′e−ikz
′
b1(z

′)

× (

∫ z′−ε

−∞
+

∫ z′+ε

z′−ε
+

∫ ∞
z′+ε

)dz′′eikz
′′
b1(z

′′)

=

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b1(z

′)

∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b1(z

′)

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞
−∞

dzeikzb1(z)

∫ ∞
z+ε

dz′e−ikz
′
b1(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

The term we need from the above result is essentially the attenuator, since what we need in

b̂3(z
′) is the predicted internal multiple. Notice here the work is almost the same as the work

deriving the leading order internal multiple eliminator (Ramirez, 2007); the difference is it

needs data self-interaction in Ramirez (2007) while our solution needs W-like interaction.
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To summarize we have,

bPIP5 = B5733(k) =

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b̂3(z

′)

∫ ∞
z′+ε

dz′′eikz
′′
b1(z

′′)

where

b̂3(k) =

∫ ∞
−∞

dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)

∫ ∞
z+ε

dz′′eikz
′′
b1(z

′′) (A.6)
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B. TYPE I AND TYPE II EQUATIONS IN INVERSE SCATTERING SERIES

In Ma et al. (2011), we stated that the higher-order terms addressing spurious prediction

can be derived from a portion of a fifth-order term in the inverse series; see equation A.1.

In this appendix, we give an argument on why other portions of the fifth-order term cannot

be employed for that purpose.

(Gd0V
′
5G

d
0)m =− (Gd0V

′
1G

d
0V
′
1G

d
0V
′
1G

d
0V
′
1G

d
0V
′
1G

d
0)m − (Gd0V

′
2G

d
0V
′
1G

d
0V
′
1G

d
0V
′
1G

d
0)m (B.1)

− (Gd0V
′
1G

d
0V
′
2G

d
0V
′
1G

d
0V
′
1G

d
0)m − (Gd0V

′
1G

d
0V
′
1G

d
0V
′
2G

d
0V
′
1G

d
0)m

− (Gd0V
′
1G

d
0V
′
1G

d
0V
′
1G

d
0V
′
2G

d
0)m − (Gd0V

′
1G

d
0V
′
3G

d
0V
′
1G

d
0)m − (Gd0V

′
1G

d
0V
′
1G

d
0V
′
3G

d
0)m

− (Gd0V
′
4G

d
0V
′
1G

d
0)m − (Gd0V

′
1G

d
0V
′
4G

d
0)m.

First, we show that there are differences between different terms in equation B.1; i.e., there

exists no reduction in type II terms. To prove that, we first review the reduction case in

type I terms.

• Type I

• Begin with equation (11′) in Weglein et al. (2003):

D′1 = (Gd0V1G
d
0)m, (B.2)
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which is

D(xg, zg, xs, zs, ω) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′ (B.3)

×Gd0(xg, zg, x
′, z′, ω)V1(x

′, z′, x′′, z′′, ω)Gd0(x′′, z′′, xs, zs, ω).

For the marine case, by first substituting the bilinear form of reference Gd0 (DeSanto, 1992)

Gd0(xg, zg, x
′, z′, ω) =

∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
eik
′
x(xg−x′)eik

′
z(zg−z′)

−k′2x − k′2z + k2
(B.4)

and

Gd0(x′′, z′′, xs, zs, ω) =

∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−xs)eik

′′
z (z
′′−zs)

−k′′2x − k′′2z + k2
(B.5)

into equation B.3, and then Fourier transforming on both sides of the resulting equation on

xg and xs, the RHS becomes

RHS =

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dxge
−ikgxg

∫ ∞
−∞

dxse
iksxs (B.6)

×
∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
eik
′
x(xg−x′)eik

′
z(zg−z′)

−k′2x − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

×
∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−xs)eik

′′
z (z
′′−zs)

−k′′2x − k′′2z + k2
.

Notice we use the convention mentioned on page R54 in Weglein et al. (2003), i.e.,

V1(k1,−k2, ω) =

∫
e−ik1·r1V1(r1, r2;ω)eik2·r2dr1dr2 (B.7)

where k1 ≡ (kg,−qg) and k2 ≡ (ks, qs).
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Combining the terms xg and xs in equation B.6, we have

RHS =

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dxge
−i(kg−k′x)xg

∫ ∞
−∞

dxse
−i(k′′x−ks)xs (B.8)

×
∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
e−ik

′
xx
′
eik
′
z(zg−z′)

−k′2x − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
xx
′′
eik
′′
z (z
′′−zs)

−k′′2x − k′′2z + k2

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′δ(k′x − kg)δ(k′′x − ks)

×
∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
e−ik

′
xx
′
eik
′
z(zg−z′)

−k′2x − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
xx
′′
eik
′′
z (z
′′−zs)

−k′′2x − k′′2z + k2

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′

×
∫ ∞
−∞

dk′z
e−ikgx

′
eik
′
z(zg−z′)

−k2g − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′z
eiksx

′′
eik
′′
z (z
′′−zs)

−k2s − k′′2z + k2

Introducing the definition: −k2g + k2 ≡ q2g and −k2s + k2 ≡ q2s , the RHS becomes,

RHS =

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′e−ikgx
′
eiksx

′′
(B.9)

×
∫ ∞
−∞

dk′z
eik
′
z(zg−z′)

−k2g − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′z
eik
′′
z (z
′′−zs)

−k2s − k′′2z + k2

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′e−ikgx
′
eiksx

′′ eiqg |zg−z
′|

2igg
V1(x

′, z′, x′′, z′′, ω)
eigs|z

′′−zs|

2iqs
,

where, in the last step, we use (see e.g., DeSanto (1992))

∫ ∞
−∞

dk′z
eik
′
z(zg−z′)

−k2g − k′2z + k2
=
eiqg |zg−z

′|

2igg
, (B.10)

and similarly ∫ ∞
−∞

dk′′z
eik
′′
z (z
′′−zs)

−k2s − k′′2z + k2
=
eigs|z

′′−zs|

2iqs
. (B.11)
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Because the perturbation is below the measurement surface (i.e., z′ > zg and z′′ > zs), we

can remove the absolute value as follows

RHS =

∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′e−ikgx
′
eiksx

′′ eiqg(z
′−zg)

igg
V1(x

′, z′, x′′, z′′, ω)
eigs(z

′′−zs)

iqs

(B.12)

=
e−iggzg

iqg

e−iqszs

iqs
V1(kg,−qg, ks, qs, ω).

Then, for the first-order term in type I, we have,

D(kg, zg, ks, zs, ω) =
e−iggzg

2iqg

e−iqszs

2iqs
V1(kg,−qg, ks, qs, ω). (B.13)

• Equation (12′) in Weglein et al. (2003) is

D′2 = (Gd0V2G
d
0)m = −(Gd0V1G

fs
0 V1G

d
0)m. (B.14)

The RHS is

RHS = −
∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
∫ ∞
−∞

dx′′′′
∫ ∞
−∞

dz′′′′

(B.15)

×Gd0(xg, zg, x
′, z′, ω)V1(x

′, z′, x′′, z′′, ω)Gfs0 (x′′, z′′, x′′′, z′′′, ω)

×V1(x′′′, z′′′, x′′′′, z′′′′, ω)Gd0(x′′′′, z′′′′, xs, zs, ω).

Inserting the bilinear forms of Gd0 and Gfs0 ,

Gd0(xg, zg, x
′, z′, ω) =

∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
eik
′
x(xg−x′)eik

′
z(zg−z′)

−k′2x − k′2z + k2
; (B.16)
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Gfs0 (x′′, z′′, x′′′, z′′′, ω) =

∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−x′′′)eik

′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2
; (B.17)

Gd0(x′′′′, z′′′′, xs, zs, ω) =

∫ ∞
−∞

dk′′′′x

∫ ∞
−∞

dk′′′′z
eik
′′′′
x (x′′′′−xs)eik

′′′′
z (z′′′′−zs)

−k′′′′2x − k′′′′2z + k2
, (B.18)

into the above equation and Fourier transform on xg and xs, gives

RHS = −
∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
∫ ∞
−∞

dx′′′′
∫ ∞
−∞

dz′′′′

(B.19)

×
∫ ∞
−∞

dk′x

∫ ∞
−∞

dk′z
eik
′
x(xg−x′)eik

′
z(zg−z′)

−k′2x − k′2z + k2
V1(x

′, z′, x′′, z′′, ω)

×
∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−x′′′)eik

′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2
V1(x

′′′, z′′′, x′′′′, z′′′′, ω)

×
∫ ∞
−∞

dk′′′′x

∫ ∞
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dk′′′′z
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x (x′′′′−xs)eik

′′′′
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−k′′′′2x − k′′′′2z + k2

∫ ∞
−∞

dxge
−ikgxg

∫ ∞
−∞

dxse
iksxs

= −
∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
∫ ∞
−∞
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∫ ∞
−∞

dz′′′′

×
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dx′′′
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dz′′′
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dx′′′′
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z (z′′′′−zs)

−k2s − k′′′′2z + k2
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Recalling the definitions of −k2g + k2 = q2g and −k2s + k2 = q2s , we have

RHS = −
∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
∫ ∞
−∞

dx′′′′
∫ ∞
−∞

dz′′′′

(B.20)

×e−ikgx′ e
iqg |zg−z′|

2igg
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−x′′′)eik

′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2

×V1(x′′′, z′′′, x′′′′, z′′′′, ω)eiksx
′′′′ eiqs|z

′′′′−zs|

2igs

= −
∫ ∞
−∞

dx′
∫ ∞
−∞

dz′
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
∫ ∞
−∞

dx′′′′
∫ ∞
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×e−ikgx′ e
iqg(z′−zg)

2igg
V1(x

′, z′, x′′, z′′, ω)

∫ ∞
−∞

dk′′x

∫ ∞
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dk′′z
eik
′′
x(x
′′−x′′′)eik

′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2

×V1(x′′′, z′′′, x′′′′, z′′′′, ω)eiksx
′′′′ eiqs(z

′′′′−zs)

2igs

Considering the integral on x′, z′, x′′′′, z′′′′ and x′′, x′′′ as a Fourier transform based on the

convention (equation B.7), we have

RHS = −
∫ ∞
−∞

dx′′
∫ ∞
−∞

dz′′
∫ ∞
−∞

dx′′′
∫ ∞
−∞

dz′′′
e−iqgzg

2igg
V1(kg,−qg, x′′, z′′, ω) (B.21)

×
∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
x(x
′′−x′′′)eik

′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2
V1(x

′′′, z′′′, ks, qs, ω)
e−iqszs

2igs

= −
∫ ∞
−∞

dz′′
∫ ∞
−∞

dz′′′
e−iqgzg

2igg
V1(kg,−qg, k′′x, z′′, ω)

×
∫ ∞
−∞

dk′′x

∫ ∞
−∞

dk′′z
eik
′′
z (z
′′+z′′′)

−k′′2x − k′′2z + k2
V1(k

′′
x, z
′′′, ks, qs, ω)

e−iqszs

2igs
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Similarly, defining −k′′2x + k2 ≡ q′′2x , we have

RHS = −
∫ ∞
−∞

dz′′
∫ ∞
−∞

dz′′′
e−iqgzg

2igg
V1(kg,−qg, k′′x, z′′, ω) (B.22)

×
∫ ∞
−∞

dk′′x
eiq
′′
x |z′′+z′′′|

−2ig′′x
V1(k

′′
x, z
′′′, ks, qs, ω)

e−iqszs

2igs

= −
∫ ∞
−∞

dz′′
∫ ∞
−∞

dz′′′
e−iqgzg

2igg
V1(kg,−qg, k′′x, z′′, ω)

×
∫ ∞
−∞

dk′′x
eiq
′′
x(z
′′+z′′′)

2ig′′x
V1(k

′′
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′′′, ks, qs, ω)

e−iqszs

2igs

= −e
−iqgzg

2igg
V1(kg,−qg, k′′x, q′′x, ω)

∫ ∞
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dk′′x
1

2ig′′x
V1(k

′′
x,−q′′x, ks, qs, ω)

e−iqszs

2igs

= −e
−iqgzg

2igg

e−iqszs

2igs

∫ ∞
−∞

dkV1(kg,−qg, k, q, ω)
1

2ig
V1(k,−q, ks, qs, ω)

Notice that the + sign in eiq
′′
x |z
′′+z′′′|

−2ig′′x
enables us to remove the absolute value.

The LHS of equation B.14 is

LHS =
e−iggzg

2iqg

e−iqszs

2iqs
V2(kg,−qg, ks, qs, ω) (B.23)

Comparing equation B.23 and equation B.22, we have

V2(kg,−qg, ks, qs, ω) = −
∫ ∞
−∞

dkV1(kg,−qg, k, q, ω)
1

2ig
V1(k,−q, ks, qs, ω) (B.24)
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• Equation (13′) in Weglein et al. (2003)

D′3 =− (Gd0V1G
fs
0 V1G

fs
0 V1G

d
0)m (B.25)

− (Gd0V1G
fs
0 V2G

d
0)m

− (Gd0V2G
fs
0 V1G

d
0)m

= + (Gd0V1G
fs
0 V1G

fs
0 V1G

d
0)m

Following the procedures from equation B.14 through equation B.22, the first term in B.25

becomes

−
∫ ∞
−∞

dkV1(kg,−qg, k, q, ω)
1

2ig

∫ ∞
−∞

dk′V1(k,−q, k′, q′, ω)
1

2ig′
V1(k

′,−q′, ks, qs, ω) (B.26)

and the second term becomes

−
∫ ∞
−∞

dkV1(kg,−qg, k, q, ω)
1

2ig
V2(k,−q, ks, qs, ω) (B.27)

Substituting V2(kg,−qg, k, q, ω) (equation B.24) into equation B.27, we have

∫ ∞
−∞

dkV1(kg,−qg, k, q, ω)
1

2ig

∫ ∞
−∞

dk′V1(k,−q, k′, q′, ω)
1

2ig′
V1(k

′,−q′, ks, qs, ω) (B.28)

Therefore, equation B.28 cancels out equation B.26, and a reduction occurs.

• Type II terms

• Equation (11′′) in Weglein et al. (2003) is

D′ = (Gd0V
′
1G

d
0)m, (B.29)
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which is

D′(kg, zg, ks, zs, ω) =
e−iggzg

2iqg

e−iqszs

2iqs
V ′1(kg,−qg, ks, qs, ω). (B.30)

Notice the LHS of equation B.30 and B.13 are different: D′1 is data with the free-surface

multiples and D′ is data without free-surface multiples.

• Equation (12′′) in Weglein et al. (2003) is

(Gd0V
′
2G

d
0)m = −(Gd0V

′
1G

d
0V
′
1G

d
0)m. (B.31)

We derive the RHS of equation B.31 following the same produce as we derive the RHS

of equation B.14. The difference resides the middle reference Green’s function. With the

middle reference Green’s function being Gd0, instead of Gfs0 , we cannot lift the absolute

value in equation B.22 without specifying the relationship between z′ and z′′. In other

words, without specifying the relationship between z′ and z′′, the RHS of equation B.31

is not computable from our data on the measurement surface. Hence, each type II term

is different and not reducible. The same argument explains the differences in higher-order

terms in type II.
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